spl

This documentation is automatically generated by online-judge-tools/verification-helper

View the Project on GitHub Forestedf/spl

:heavy_check_mark: number_theory/test/montgomery_64_stress.test.cpp

Depends on

Code

#define PROBLEM \
    "https://onlinejudge.u-aizu.ac.jp/courses/lesson/2/ITP1/1/ITP1_1_A"
#define FAST_IO
#define FIX_SEED

#include "../../number_theory/montgomery_64.hpp"
#include "../../template/random.hpp"
#include "../../template/template.hpp"

using M = MontgomeryModInt64<0>;

u64 add(u64 a, u64 b, u64 m) { return (a + b) % m; }
u64 sub(u64 a, u64 b, u64 m) { return (m + a - b) % m; }
u64 mul(u64 a, u64 b, u64 m) { return __uint128_t(a) * b % m; }

void test_small_mod(i32 m) {
    M::set_mod(m);
    REP(i, m) REP(j, m) {
        M x(i), y(j);
        assert((x + y).val() == add(i, j, m));
        assert((x - y).val() == sub(i, j, m));
        assert((x * y).val() == mul(i, j, m));
    }
}

void test_large_mod(u64 m) {
    M::set_mod(m);

    constexpr int ITER = 1'000'000;

    for (int i = 0; i < ITER; ++i) {
        u64 x = uniform(m);
        u64 y = uniform(m);
        M x_(x), y_(y);
        assert((x_ + y_).val() == add(x, y, m));
        assert((x_ - y_).val() == sub(x, y, m));
        assert((x_ * y_).val() == mul(x, y, m));
    }
}

void test() {
    for (i32 m = 3; m <= 99; m += 2) {
        test_small_mod(m);
    }

    for (int i = 0; i < 10; ++i) {
        u64 m = uniform<u64>(3, 1ULL << 63);
        while (m % 2 == 0) {
            m = uniform<u64>(3, 1ULL << 63);
        }
        test_large_mod(m);
    }

    test_large_mod((1ULL << 63) - 1);
}

int main() {
    test();
    cout << "Hello World\n";
}
#line 1 "number_theory/test/montgomery_64_stress.test.cpp"
#define PROBLEM \
    "https://onlinejudge.u-aizu.ac.jp/courses/lesson/2/ITP1/1/ITP1_1_A"
#define FAST_IO
#define FIX_SEED

#line 2 "number_theory/montgomery_64.hpp"
#include <cassert>

// mod: odd, < 2^{63}
template <int id>
struct MontgomeryModInt64 {
    using u64 = unsigned long long;
    using u128 = __uint128_t;

    static u64 inv_64(u64 n) {
        u64 r = n;
        for (int i = 0; i < 5; ++i) {
            r *= 2 - n * r;
        }
        return r;
    }

    static u64 mod, neg_inv, sq;
    static void set_mod(u64 m) {
        assert(m % 2 == 1 && m < (1ULL << 63));
        mod = m;
        neg_inv = -inv_64(m);
        sq = -u128(mod) % mod;
    }
    static u64 get_mod() { return mod; }

    static u64 reduce(u128 xr) {
        u64 ret = (xr + u128(u64(xr) * neg_inv) * mod) >> 64;
        if (ret >= mod) {
            ret -= mod;
        }
        return ret;
    }

    using M = MontgomeryModInt64<id>;

    u64 x;
    MontgomeryModInt64() : x(0) {}
    MontgomeryModInt64(u64 _x) : x(reduce(u128(_x) * sq)) {}

    u64 val() const { return reduce(u128(x)); }

    M &operator+=(M rhs) {
        if ((x += rhs.x) >= mod) {
            x -= mod;
        }
        return *this;
    }
    M &operator-=(M rhs) {
        if ((x -= rhs.x) >= mod) {
            x += mod;
        }
        return *this;
    }
    M &operator*=(M rhs) {
        x = reduce(u128(x) * rhs.x);
        return *this;
    }
    M operator+(M rhs) const { return M(*this) += rhs; }
    M operator-(M rhs) const { return M(*this) -= rhs; }
    M operator*(M rhs) const { return M(*this) *= rhs; }

    M pow(u64 t) const {
        M ret(1);
        M self = *this;
        while (t) {
            if (t & 1) {
                ret *= self;
            }
            self *= self;
            t >>= 1;
        }
        return ret;
    }
    M inv() const {
        assert(x);
        return this->pow(mod - 2);
    }

    M &operator/=(M rhs) {
        *this /= rhs.inv();
        return *this;
    }
    M operator/(M rhs) const { return M(*this) /= rhs; }
};

template <int id> unsigned long long MontgomeryModInt64<id>::mod = 1;
template <int id> unsigned long long MontgomeryModInt64<id>::neg_inv = 1;
template <int id> unsigned long long MontgomeryModInt64<id>::sq = 1;
#line 2 "template/random.hpp"
#include <chrono>
#include <random>

#if defined(LOCAL) || defined(FIX_SEED)
std::mt19937_64 mt(123456789);
#else
std::mt19937_64 mt(std::chrono::steady_clock::now().time_since_epoch().count());
#endif

template <typename T>
T uniform(T l, T r) {
    return std::uniform_int_distribution<T>(l, r - 1)(mt);
}
template <typename T>
T uniform(T n) {
    return std::uniform_int_distribution<T>(0, n - 1)(mt);
}
#line 2 "template/template.hpp"
#include <bits/stdc++.h>
#define OVERRIDE(a, b, c, d, ...) d
#define REP2(i, n) for (i32 i = 0; i < (i32)(n); ++i)
#define REP3(i, m, n) for (i32 i = (i32)(m); i < (i32)(n); ++i)
#define REP(...) OVERRIDE(__VA_ARGS__, REP3, REP2)(__VA_ARGS__)
#define PER2(i, n) for (i32 i = (i32)(n)-1; i >= 0; --i)
#define PER3(i, m, n) for (i32 i = (i32)(n)-1; i >= (i32)(m); --i)
#define PER(...) OVERRIDE(__VA_ARGS__, PER3, PER2)(__VA_ARGS__)
#define ALL(x) begin(x), end(x)
#define LEN(x) (i32)(x.size())
using namespace std;
using u32 = unsigned int;
using u64 = unsigned long long;
using i32 = signed int;
using i64 = signed long long;
using f64 = double;
using f80 = long double;
using pi = pair<i32, i32>;
using pl = pair<i64, i64>;
template <typename T>
using V = vector<T>;
template <typename T>
using VV = V<V<T>>;
template <typename T>
using VVV = V<V<V<T>>>;
template <typename T>
using VVVV = V<V<V<V<T>>>>;
template <typename T>
using PQR = priority_queue<T, V<T>, greater<T>>;
template <typename T>
bool chmin(T &x, const T &y) {
    if (x > y) {
        x = y;
        return true;
    }
    return false;
}
template <typename T>
bool chmax(T &x, const T &y) {
    if (x < y) {
        x = y;
        return true;
    }
    return false;
}
template <typename T>
i32 lob(const V<T> &arr, const T &v) {
    return (i32)(lower_bound(ALL(arr), v) - arr.begin());
}
template <typename T>
i32 upb(const V<T> &arr, const T &v) {
    return (i32)(upper_bound(ALL(arr), v) - arr.begin());
}
template <typename T>
V<i32> argsort(const V<T> &arr) {
    V<i32> ret(arr.size());
    iota(ALL(ret), 0);
    sort(ALL(ret), [&](i32 i, i32 j) -> bool {
        if (arr[i] == arr[j]) {
            return i < j;
        } else {
            return arr[i] < arr[j];
        }
    });
    return ret;
}
#ifdef INT128
using u128 = __uint128_t;
using i128 = __int128_t;
#endif
[[maybe_unused]] constexpr i32 INF = 1000000100;
[[maybe_unused]] constexpr i64 INF64 = 3000000000000000100;
struct SetUpIO {
    SetUpIO() {
#ifdef FAST_IO
        ios::sync_with_stdio(false);
        cin.tie(nullptr);
#endif
        cout << fixed << setprecision(15);
    }
} set_up_io;
void scan(char &x) { cin >> x; }
void scan(u32 &x) { cin >> x; }
void scan(u64 &x) { cin >> x; }
void scan(i32 &x) { cin >> x; }
void scan(i64 &x) { cin >> x; }
void scan(f64 &x) { cin >> x; }
void scan(string &x) { cin >> x; }
template <typename T>
void scan(V<T> &x) {
    for (T &ele : x) {
        scan(ele);
    }
}
void read() {}
template <typename Head, typename... Tail>
void read(Head &head, Tail &...tail) {
    scan(head);
    read(tail...);
}
#define CHAR(...)     \
    char __VA_ARGS__; \
    read(__VA_ARGS__);
#define U32(...)     \
    u32 __VA_ARGS__; \
    read(__VA_ARGS__);
#define U64(...)     \
    u64 __VA_ARGS__; \
    read(__VA_ARGS__);
#define I32(...)     \
    i32 __VA_ARGS__; \
    read(__VA_ARGS__);
#define I64(...)     \
    i64 __VA_ARGS__; \
    read(__VA_ARGS__);
#define F64(...)     \
    f64 __VA_ARGS__; \
    read(__VA_ARGS__);
#define STR(...)        \
    string __VA_ARGS__; \
    read(__VA_ARGS__);
#define VEC(type, name, size) \
    V<type> name(size);       \
    read(name);
#define VVEC(type, name, size1, size2)    \
    VV<type> name(size1, V<type>(size2)); \
    read(name);
#line 9 "number_theory/test/montgomery_64_stress.test.cpp"

using M = MontgomeryModInt64<0>;

u64 add(u64 a, u64 b, u64 m) { return (a + b) % m; }
u64 sub(u64 a, u64 b, u64 m) { return (m + a - b) % m; }
u64 mul(u64 a, u64 b, u64 m) { return __uint128_t(a) * b % m; }

void test_small_mod(i32 m) {
    M::set_mod(m);
    REP(i, m) REP(j, m) {
        M x(i), y(j);
        assert((x + y).val() == add(i, j, m));
        assert((x - y).val() == sub(i, j, m));
        assert((x * y).val() == mul(i, j, m));
    }
}

void test_large_mod(u64 m) {
    M::set_mod(m);

    constexpr int ITER = 1'000'000;

    for (int i = 0; i < ITER; ++i) {
        u64 x = uniform(m);
        u64 y = uniform(m);
        M x_(x), y_(y);
        assert((x_ + y_).val() == add(x, y, m));
        assert((x_ - y_).val() == sub(x, y, m));
        assert((x_ * y_).val() == mul(x, y, m));
    }
}

void test() {
    for (i32 m = 3; m <= 99; m += 2) {
        test_small_mod(m);
    }

    for (int i = 0; i < 10; ++i) {
        u64 m = uniform<u64>(3, 1ULL << 63);
        while (m % 2 == 0) {
            m = uniform<u64>(3, 1ULL << 63);
        }
        test_large_mod(m);
    }

    test_large_mod((1ULL << 63) - 1);
}

int main() {
    test();
    cout << "Hello World\n";
}
Back to top page