This documentation is automatically generated by online-judge-tools/verification-helper
#define PROBLEM "https://onlinejudge.u-aizu.ac.jp/courses/lesson/2/ITP1/1/ITP1_1_A"
#define FAST_IO
#define FIX_SEED
#include "../../template/template.hpp"
#include "../../template/random.hpp"
#include "../../number_theory/binary_gcd.hpp"
void test() {
constexpr int ITER = 1'000'000;
for (int t = 0; t < ITER; ++t) {
u64 a = mt();
u64 b = mt();
assert(gcd(a, b) == binary_gcd(a, b));
}
constexpr int RANGE = 1000;
for (int i = 0; i < RANGE; ++i) {
for (int j = 0; j < RANGE; ++j) {
assert(gcd(i, j) == binary_gcd(i, j));
}
}
}
int main() {
test();
cout << "Hello World\n";
}
#line 1 "number_theory/test/binary_gcd_stress.test.cpp"
#define PROBLEM "https://onlinejudge.u-aizu.ac.jp/courses/lesson/2/ITP1/1/ITP1_1_A"
#define FAST_IO
#define FIX_SEED
#line 2 "template/template.hpp"
#include <bits/stdc++.h>
#define OVERRIDE(a, b, c, d, ...) d
#define REP2(i, n) for (i32 i = 0; i < (i32)(n); ++i)
#define REP3(i, m, n) for (i32 i = (i32)(m); i < (i32)(n); ++i)
#define REP(...) OVERRIDE(__VA_ARGS__, REP3, REP2)(__VA_ARGS__)
#define PER2(i, n) for (i32 i = (i32)(n)-1; i >= 0; --i)
#define PER3(i, m, n) for (i32 i = (i32)(n)-1; i >= (i32)(m); --i)
#define PER(...) OVERRIDE(__VA_ARGS__, PER3, PER2)(__VA_ARGS__)
#define ALL(x) begin(x), end(x)
#define LEN(x) (i32)(x.size())
using namespace std;
using u32 = unsigned int;
using u64 = unsigned long long;
using i32 = signed int;
using i64 = signed long long;
using f64 = double;
using f80 = long double;
using pi = pair<i32, i32>;
using pl = pair<i64, i64>;
template <typename T>
using V = vector<T>;
template <typename T>
using VV = V<V<T>>;
template <typename T>
using VVV = V<V<V<T>>>;
template <typename T>
using VVVV = V<V<V<V<T>>>>;
template <typename T>
using PQR = priority_queue<T, V<T>, greater<T>>;
template <typename T>
bool chmin(T &x, const T &y) {
if (x > y) {
x = y;
return true;
}
return false;
}
template <typename T>
bool chmax(T &x, const T &y) {
if (x < y) {
x = y;
return true;
}
return false;
}
template <typename T>
i32 lob(const V<T> &arr, const T &v) {
return (i32)(lower_bound(ALL(arr), v) - arr.begin());
}
template <typename T>
i32 upb(const V<T> &arr, const T &v) {
return (i32)(upper_bound(ALL(arr), v) - arr.begin());
}
template <typename T>
V<i32> argsort(const V<T> &arr) {
V<i32> ret(arr.size());
iota(ALL(ret), 0);
sort(ALL(ret), [&](i32 i, i32 j) -> bool {
if (arr[i] == arr[j]) {
return i < j;
} else {
return arr[i] < arr[j];
}
});
return ret;
}
#ifdef INT128
using u128 = __uint128_t;
using i128 = __int128_t;
#endif
[[maybe_unused]] constexpr i32 INF = 1000000100;
[[maybe_unused]] constexpr i64 INF64 = 3000000000000000100;
struct SetUpIO {
SetUpIO() {
#ifdef FAST_IO
ios::sync_with_stdio(false);
cin.tie(nullptr);
#endif
cout << fixed << setprecision(15);
}
} set_up_io;
void scan(char &x) { cin >> x; }
void scan(u32 &x) { cin >> x; }
void scan(u64 &x) { cin >> x; }
void scan(i32 &x) { cin >> x; }
void scan(i64 &x) { cin >> x; }
void scan(f64 &x) { cin >> x; }
void scan(string &x) { cin >> x; }
template <typename T>
void scan(V<T> &x) {
for (T &ele : x) {
scan(ele);
}
}
void read() {}
template <typename Head, typename... Tail>
void read(Head &head, Tail &...tail) {
scan(head);
read(tail...);
}
#define CHAR(...) \
char __VA_ARGS__; \
read(__VA_ARGS__);
#define U32(...) \
u32 __VA_ARGS__; \
read(__VA_ARGS__);
#define U64(...) \
u64 __VA_ARGS__; \
read(__VA_ARGS__);
#define I32(...) \
i32 __VA_ARGS__; \
read(__VA_ARGS__);
#define I64(...) \
i64 __VA_ARGS__; \
read(__VA_ARGS__);
#define F64(...) \
f64 __VA_ARGS__; \
read(__VA_ARGS__);
#define STR(...) \
string __VA_ARGS__; \
read(__VA_ARGS__);
#define VEC(type, name, size) \
V<type> name(size); \
read(name);
#define VVEC(type, name, size1, size2) \
VV<type> name(size1, V<type>(size2)); \
read(name);
#line 4 "template/random.hpp"
#if defined(LOCAL) || defined(FIX_SEED)
std::mt19937_64 mt(123456789);
#else
std::mt19937_64 mt(std::chrono::steady_clock::now().time_since_epoch().count());
#endif
template <typename T>
T uniform(T l, T r) {
return std::uniform_int_distribution<T>(l, r - 1)(mt);
}
template <typename T>
T uniform(T n) {
return std::uniform_int_distribution<T>(0, n - 1)(mt);
}
#line 2 "number_theory/binary_gcd.hpp"
unsigned long long binary_gcd(unsigned long long x, unsigned long long y) {
if (x == 0) {
return y;
}
if (y == 0) {
return x;
}
int a = __builtin_ctz(x);
int b = __builtin_ctz(y);
x >>= a;
y >>= b;
while (x != y) {
int m = __builtin_ctz(x - y);
if (x > y) {
x = (x - y) >> m;
} else {
y = (y - x) >> m;
}
}
return x << (a < b ? a : b);
}
#line 8 "number_theory/test/binary_gcd_stress.test.cpp"
void test() {
constexpr int ITER = 1'000'000;
for (int t = 0; t < ITER; ++t) {
u64 a = mt();
u64 b = mt();
assert(gcd(a, b) == binary_gcd(a, b));
}
constexpr int RANGE = 1000;
for (int i = 0; i < RANGE; ++i) {
for (int j = 0; j < RANGE; ++j) {
assert(gcd(i, j) == binary_gcd(i, j));
}
}
}
int main() {
test();
cout << "Hello World\n";
}