This documentation is automatically generated by online-judge-tools/verification-helper
#include "number_theory/primality.hpp"
#pragma once
namespace primality {
using u64 = unsigned long long;
using u128 = __uint128_t;
u64 inv_64(u64 n) {
u64 r = n;
for (int i = 0; i < 5; ++i) {
r *= 2 - n * r;
}
return r;
}
// n: odd, < 2^{62}
struct Montgomery64 {
u64 n, mni, p;
Montgomery64(u64 n) : n(n), mni(-inv_64(n)), p(-1ULL % n + 1) {}
u64 mulmr(u64 xr, u64 yr) const {
u128 z = (u128)xr * yr;
u64 ret = (z + (u128)((u64)z * mni) * n) >> 64;
if (ret >= n) {
ret -= n;
}
return ret;
}
u64 mr(u64 xr) const {
u64 ret = (xr + (u128)(xr * mni) * n) >> 64;
if (ret >= n) {
ret -= n;
}
return ret;
}
u64 pow(u64 xr, u64 t) const {
u64 ret = p;
while (t) {
if (t & 1) {
ret = mulmr(ret, xr);
}
xr = mulmr(xr, xr);
t >>= 1;
}
return ret;
}
};
bool is_prime(u64 n) {
if (n == 2) {
return true;
}
if (n == 1 || n % 2 == 0) {
return false;
}
u64 s = __builtin_ctzll(n - 1);
u64 d = (n - 1) >> s;
u64 base[] = {2, 325, 9375, 28178, 450775, 9780504, 1795265022};
Montgomery64 mont(n);
u64 fl = n - mont.p;
for (u64 b : base) {
b = mont.mr(b);
if (!b) {
continue;
}
u64 t = mont.pow(b, d);
if (t == mont.p) {
continue;
}
u64 i = 0;
for (; i < s; ++i) {
if (t == fl) {
break;
}
t = mont.mulmr(t, t);
}
if (i == s) {
return false;
}
}
return true;
}
} // namespace primality
bool is_prime(unsigned long long n) {
return primality::is_prime(n);
}
#line 2 "number_theory/primality.hpp"
namespace primality {
using u64 = unsigned long long;
using u128 = __uint128_t;
u64 inv_64(u64 n) {
u64 r = n;
for (int i = 0; i < 5; ++i) {
r *= 2 - n * r;
}
return r;
}
// n: odd, < 2^{62}
struct Montgomery64 {
u64 n, mni, p;
Montgomery64(u64 n) : n(n), mni(-inv_64(n)), p(-1ULL % n + 1) {}
u64 mulmr(u64 xr, u64 yr) const {
u128 z = (u128)xr * yr;
u64 ret = (z + (u128)((u64)z * mni) * n) >> 64;
if (ret >= n) {
ret -= n;
}
return ret;
}
u64 mr(u64 xr) const {
u64 ret = (xr + (u128)(xr * mni) * n) >> 64;
if (ret >= n) {
ret -= n;
}
return ret;
}
u64 pow(u64 xr, u64 t) const {
u64 ret = p;
while (t) {
if (t & 1) {
ret = mulmr(ret, xr);
}
xr = mulmr(xr, xr);
t >>= 1;
}
return ret;
}
};
bool is_prime(u64 n) {
if (n == 2) {
return true;
}
if (n == 1 || n % 2 == 0) {
return false;
}
u64 s = __builtin_ctzll(n - 1);
u64 d = (n - 1) >> s;
u64 base[] = {2, 325, 9375, 28178, 450775, 9780504, 1795265022};
Montgomery64 mont(n);
u64 fl = n - mont.p;
for (u64 b : base) {
b = mont.mr(b);
if (!b) {
continue;
}
u64 t = mont.pow(b, d);
if (t == mont.p) {
continue;
}
u64 i = 0;
for (; i < s; ++i) {
if (t == fl) {
break;
}
t = mont.mulmr(t, t);
}
if (i == s) {
return false;
}
}
return true;
}
} // namespace primality
bool is_prime(unsigned long long n) {
return primality::is_prime(n);
}