This documentation is automatically generated by online-judge-tools/verification-helper
#include "graph/block_cut_tree.hpp"
#pragma once
#include "graph.hpp"
template <typename T>
Graph<> block_cut_tree(const Graph<T> &g) {
std::vector<int> ord(g.v()), low(g.v()), used(g.v(), 0);
std::vector<int> vstc;
vstc.reserve(g.v());
Graph<> tree(g.v());
int t = 0;
auto dfs = [&](auto dfs, int v, int p) -> void {
used[v] = 1;
ord[v] = t++;
low[v] = t;
vstc.push_back(v);
bool pf = false;
int chl = 0;
for (const auto &e : g[v]) {
if (e.to == p && !pf) {
pf = true;
continue;
}
if (used[e.to]) {
low[v] = std::min(low[v], ord[e.to]);
} else {
int vsz = (int)vstc.size();
++chl;
dfs(dfs, e.to, v);
low[v] = std::min(low[v], low[e.to]);
if ((p == -1 && chl >= 2) || (p != -1 && low[e.to] >= ord[v])) {
int bcc = tree.add_vertex();
while ((int)vstc.size() > vsz) {
tree.add_edge(bcc, vstc.back());
vstc.pop_back();
}
tree.add_edge(bcc, v);
}
}
}
};
for (int i = 0; i < g.v(); ++i) {
if (!used[i]) {
dfs(dfs, i, -1);
int bcc = tree.add_vertex();
for (int v : vstc) {
tree.add_edge(bcc, v);
}
vstc.clear();
}
}
tree.build();
return tree;
}
#line 2 "graph/graph.hpp"
#include <iostream>
#include <cassert>
#include <vector>
template <typename T>
struct Edge {
using W = T;
int from, to, id;
W weight;
Edge<T> rev() const {
return Edge<T>{to, from, id, weight};
}
};
template <typename T>
void debug(const Edge<T> &e) {
std::cerr << e.from << " -> " << e.to << " id = " << e.id << std::cerr << " weight = ";
debug(e.weight);
}
template <typename T = int, bool DIR = false>
class Graph {
public:
using E = Edge<T>;
using W = T;
static constexpr bool DIRECTED = DIR;
struct Adjacency {
using Iter = typename std::vector<E>::iterator;
Iter be, en;
Iter begin() const { return be; }
Iter end() const { return en; }
int size() const { return (int)std::distance(be, en); }
E &operator[](int idx) const { return be[idx]; }
};
struct ConstAdjacency {
using Iter = typename std::vector<E>::const_iterator;
Iter be, en;
Iter begin() const { return be; }
Iter end() const { return en; }
int size() const { return (int)std::distance(be, en); }
const E &operator[](int idx) const { return be[idx]; }
};
private:
int n, m;
std::vector<E> edges, csr;
std::vector<int> sep;
bool built;
public:
Graph(int n) : n(n), m(0), built(false) {}
int v() const { return n; }
int e() const { return m; }
int add_vertex() {
return n++;
}
void add_edge(int from, int to, W weight = 1) {
assert(0 <= from && from < n && 0 <= to && to < n);
edges.emplace_back(E{from, to, m++, weight});
}
void build() {
sep.assign(n + 1, 0);
csr.resize(DIRECTED ? m : 2 * m);
for (const E &e : edges) {
++sep[e.from + 1];
if (!DIRECTED) {
++sep[e.to + 1];
}
}
for (int i = 0; i < n; ++i) {
sep[i + 1] += sep[i];
}
std::vector<int> c = sep;
for (const E &e : edges) {
csr[c[e.from]++] = e;
if (!DIRECTED) {
csr[c[e.to]++] = e.rev();
}
}
built = true;
}
Adjacency operator[](int v) {
assert(built && 0 <= v && v < n);
return Adjacency{csr.begin() + sep[v], csr.begin() + sep[v + 1]};
}
ConstAdjacency operator[](int v) const {
assert(built && 0 <= v && v < n);
return ConstAdjacency{csr.begin() + sep[v], csr.begin() + sep[v + 1]};
}
};
#line 3 "graph/block_cut_tree.hpp"
template <typename T>
Graph<> block_cut_tree(const Graph<T> &g) {
std::vector<int> ord(g.v()), low(g.v()), used(g.v(), 0);
std::vector<int> vstc;
vstc.reserve(g.v());
Graph<> tree(g.v());
int t = 0;
auto dfs = [&](auto dfs, int v, int p) -> void {
used[v] = 1;
ord[v] = t++;
low[v] = t;
vstc.push_back(v);
bool pf = false;
int chl = 0;
for (const auto &e : g[v]) {
if (e.to == p && !pf) {
pf = true;
continue;
}
if (used[e.to]) {
low[v] = std::min(low[v], ord[e.to]);
} else {
int vsz = (int)vstc.size();
++chl;
dfs(dfs, e.to, v);
low[v] = std::min(low[v], low[e.to]);
if ((p == -1 && chl >= 2) || (p != -1 && low[e.to] >= ord[v])) {
int bcc = tree.add_vertex();
while ((int)vstc.size() > vsz) {
tree.add_edge(bcc, vstc.back());
vstc.pop_back();
}
tree.add_edge(bcc, v);
}
}
}
};
for (int i = 0; i < g.v(); ++i) {
if (!used[i]) {
dfs(dfs, i, -1);
int bcc = tree.add_vertex();
for (int v : vstc) {
tree.add_edge(bcc, v);
}
vstc.clear();
}
}
tree.build();
return tree;
}