This documentation is automatically generated by online-judge-tools/verification-helper
#define PROBLEM "https://judge.yosupo.jp/problem/rectangle_sum"
#define FAST_IO
#include "../../data_structure/rectangle_sum.hpp"
#include "../../template/template.hpp"
int main() {
I32(n, q);
RectangleSum<i32, i64> rs;
for (int i = 0; i < n; ++i) {
I32(x, y, w);
rs.add_point(x, y, w);
}
for (int i = 0; i < q; ++i) {
I32(l, d, r, u);
rs.add_query(l, r, d, u);
}
V<i64> ret = rs.solve();
REP(i, q) {
cout << ret[i] << '\n';
}
}
#line 1 "data_structure/test/rectangle_sum.test.cpp"
#define PROBLEM "https://judge.yosupo.jp/problem/rectangle_sum"
#define FAST_IO
#line 2 "data_structure/fenwick_tree.hpp"
#include <cassert>
#include <vector>
#line 2 "data_structure/operations.hpp"
#include <algorithm>
#include <limits>
#include <utility>
template <typename T>
struct Add {
using Value = T;
static Value id() { return T(0); }
static Value op(const Value &lhs, const Value &rhs) { return lhs + rhs; }
static Value inv(const Value &x) { return -x; }
};
template <typename T>
struct Mul {
using Value = T;
static Value id() { return Value(1); }
static Value op(const Value &lhs, const Value &rhs) { return lhs * rhs; }
static Value inv(const Value &x) { return Value(1) / x; }
};
template <typename T>
struct Min {
static_assert(std::numeric_limits<T>::is_specialized);
using Value = T;
static Value id() { return std::numeric_limits<T>::max(); }
static Value op(const Value &lhs, const Value &rhs) {
return std::min(lhs, rhs);
}
};
template <typename T>
struct Max {
static_assert(std::numeric_limits<T>::is_specialized);
using Value = T;
static Value id() { return std::numeric_limits<Value>::min(); }
static Value op(const Value &lhs, const Value &rhs) {
return std::max(lhs, rhs);
}
};
template <typename T>
struct Xor {
using Value = T;
static Value id() { return T(0); }
static Value op(const Value &lhs, const Value &rhs) { return lhs ^ rhs; }
static Value inv(const Value &x) { return x; }
};
template <typename Monoid>
struct Reversible {
using Value = std::pair<typename Monoid::Value, typename Monoid::Value>;
static Value id() { return Value(Monoid::id(), Monoid::id()); }
static Value op(const Value &v1, const Value &v2) {
return Value(Monoid::op(v1.first, v2.first),
Monoid::op(v2.second, v1.second));
}
};
#line 6 "data_structure/fenwick_tree.hpp"
template <typename CommutativeGroup>
class FenwickTree {
public:
using Value = typename CommutativeGroup::Value;
private:
std::vector<Value> data;
public:
FenwickTree(int n) : data(n, CommutativeGroup::id()) {}
void add(int idx, const Value &x) {
assert(idx >= 0 && idx < (int)data.size());
for (; idx < (int)data.size(); idx |= idx + 1) {
data[idx] = CommutativeGroup::op(data[idx], x);
}
}
Value sum(int r) const {
assert(r >= 0 && r <= (int)data.size());
Value ret = CommutativeGroup::id();
for (; r > 0; r &= r - 1) {
ret = CommutativeGroup::op(ret, data[r - 1]);
}
return ret;
}
Value sum(int l, int r) const {
assert(l >= 0 && l <= r && r <= (int)data.size());
return CommutativeGroup::op(sum(r), CommutativeGroup::inv(sum(l)));
}
};
template <typename T>
using FenwickTreeAdd = FenwickTree<Add<T>>;
#line 4 "data_structure/rectangle_sum.hpp"
template <typename C, typename V>
class RectangleSum {
struct Point {
C x, y;
V v;
};
struct Query {
C xl, xr, yl, yr;
int idx;
};
std::vector<Point> pts;
std::vector<Query> qrs;
public:
RectangleSum() : pts(), qrs() {}
void add_point(C x, C y, V v) {
pts.emplace_back(Point{x, y, v});
}
void add_query(C xl, C xr, C yl, C yr) {
qrs.emplace_back(Query{xl, xr, yl, yr, (int)qrs.size()});
}
std::vector<V> solve() {
std::sort(pts.begin(), pts.end(), [](const Point &p0, const Point &p1) -> bool {
return p0.x < p1.x;
});
struct Q {
C x, d, u;
int id;
bool is_positive;
};
std::vector<Q> q_;
q_.reserve(2 * qrs.size());
for (const Query &qr : qrs) {
q_.push_back(Q{qr.xl, qr.yl, qr.yr, qr.idx, false});
q_.push_back(Q{qr.xr, qr.yl, qr.yr, qr.idx, true});
}
std::sort(q_.begin(), q_.end(), [](const Q &q0, const Q &q1) -> bool {
return q0.x < q1.x;
});
std::vector<C> ys;
ys.reserve(pts.size());
for (const Point &p : pts) {
ys.push_back(p.y);
}
std::sort(ys.begin(), ys.end());
ys.erase(std::unique(ys.begin(), ys.end()), ys.end());
FenwickTreeAdd<V> fw((int)ys.size());
std::vector<V> ret(qrs.size(), 0);
typename std::vector<Point>::iterator it = pts.begin();
for (const Q &q : q_) {
while (it != pts.end() && it->x < q.x) {
int y = (int)(std::lower_bound(ys.begin(), ys.end(), it->y) - ys.begin());
fw.add(y, it->v);
++it;
}
int d = (int)(std::lower_bound(ys.begin(), ys.end(), q.d) - ys.begin());
int u = (int)(std::lower_bound(ys.begin(), ys.end(), q.u) - ys.begin());
V sum = fw.sum(d, u);
if (q.is_positive) {
ret[q.id] += sum;
} else {
ret[q.id] -= sum;
}
}
return ret;
}
};
#line 2 "template/template.hpp"
#include <bits/stdc++.h>
#define OVERRIDE(a, b, c, d, ...) d
#define REP2(i, n) for (i32 i = 0; i < (i32)(n); ++i)
#define REP3(i, m, n) for (i32 i = (i32)(m); i < (i32)(n); ++i)
#define REP(...) OVERRIDE(__VA_ARGS__, REP3, REP2)(__VA_ARGS__)
#define PER2(i, n) for (i32 i = (i32)(n)-1; i >= 0; --i)
#define PER3(i, m, n) for (i32 i = (i32)(n)-1; i >= (i32)(m); --i)
#define PER(...) OVERRIDE(__VA_ARGS__, PER3, PER2)(__VA_ARGS__)
#define ALL(x) begin(x), end(x)
#define LEN(x) (i32)(x.size())
using namespace std;
using u32 = unsigned int;
using u64 = unsigned long long;
using i32 = signed int;
using i64 = signed long long;
using f64 = double;
using f80 = long double;
using pi = pair<i32, i32>;
using pl = pair<i64, i64>;
template <typename T>
using V = vector<T>;
template <typename T>
using VV = V<V<T>>;
template <typename T>
using VVV = V<V<V<T>>>;
template <typename T>
using VVVV = V<V<V<V<T>>>>;
template <typename T>
using PQR = priority_queue<T, V<T>, greater<T>>;
template <typename T>
bool chmin(T &x, const T &y) {
if (x > y) {
x = y;
return true;
}
return false;
}
template <typename T>
bool chmax(T &x, const T &y) {
if (x < y) {
x = y;
return true;
}
return false;
}
template <typename T>
i32 lob(const V<T> &arr, const T &v) {
return (i32)(lower_bound(ALL(arr), v) - arr.begin());
}
template <typename T>
i32 upb(const V<T> &arr, const T &v) {
return (i32)(upper_bound(ALL(arr), v) - arr.begin());
}
template <typename T>
V<i32> argsort(const V<T> &arr) {
V<i32> ret(arr.size());
iota(ALL(ret), 0);
sort(ALL(ret), [&](i32 i, i32 j) -> bool {
if (arr[i] == arr[j]) {
return i < j;
} else {
return arr[i] < arr[j];
}
});
return ret;
}
#ifdef INT128
using u128 = __uint128_t;
using i128 = __int128_t;
#endif
[[maybe_unused]] constexpr i32 INF = 1000000100;
[[maybe_unused]] constexpr i64 INF64 = 3000000000000000100;
struct SetUpIO {
SetUpIO() {
#ifdef FAST_IO
ios::sync_with_stdio(false);
cin.tie(nullptr);
#endif
cout << fixed << setprecision(15);
}
} set_up_io;
void scan(char &x) { cin >> x; }
void scan(u32 &x) { cin >> x; }
void scan(u64 &x) { cin >> x; }
void scan(i32 &x) { cin >> x; }
void scan(i64 &x) { cin >> x; }
void scan(f64 &x) { cin >> x; }
void scan(string &x) { cin >> x; }
template <typename T>
void scan(V<T> &x) {
for (T &ele : x) {
scan(ele);
}
}
void read() {}
template <typename Head, typename... Tail>
void read(Head &head, Tail &...tail) {
scan(head);
read(tail...);
}
#define CHAR(...) \
char __VA_ARGS__; \
read(__VA_ARGS__);
#define U32(...) \
u32 __VA_ARGS__; \
read(__VA_ARGS__);
#define U64(...) \
u64 __VA_ARGS__; \
read(__VA_ARGS__);
#define I32(...) \
i32 __VA_ARGS__; \
read(__VA_ARGS__);
#define I64(...) \
i64 __VA_ARGS__; \
read(__VA_ARGS__);
#define F64(...) \
f64 __VA_ARGS__; \
read(__VA_ARGS__);
#define STR(...) \
string __VA_ARGS__; \
read(__VA_ARGS__);
#define VEC(type, name, size) \
V<type> name(size); \
read(name);
#define VVEC(type, name, size1, size2) \
VV<type> name(size1, V<type>(size2)); \
read(name);
#line 6 "data_structure/test/rectangle_sum.test.cpp"
int main() {
I32(n, q);
RectangleSum<i32, i64> rs;
for (int i = 0; i < n; ++i) {
I32(x, y, w);
rs.add_point(x, y, w);
}
for (int i = 0; i < q; ++i) {
I32(l, d, r, u);
rs.add_query(l, r, d, u);
}
V<i64> ret = rs.solve();
REP(i, q) {
cout << ret[i] << '\n';
}
}