spl

This documentation is automatically generated by online-judge-tools/verification-helper

View the Project on GitHub Forestedf/spl

:heavy_check_mark: data_structure/test/point_add_rectangle_sum.test.cpp

Depends on

Code

#define PROBLEM "https://judge.yosupo.jp/problem/point_add_rectangle_sum"
#define FAST_IO

#include "../../data_structure/fenwick_tree.hpp"
#include "../../data_structure/general_range_tree.hpp"
#include "../../template/template.hpp"

int main() {
    i32 n, q;
    cin >> n >> q;
    V<i32> x(n), y(n), w(n);
    REP(i, n) { cin >> x[i] >> y[i] >> w[i]; }
    V<tuple<i32, i32, i32, i32, i32>> queries(q);
    for (auto &[type, a, b, c, d] : queries) {
        cin >> type;
        if (type == 0) {
            cin >> a >> b >> c;
            d = 0;
        } else {
            cin >> a >> b >> c >> d;
        }
    }
    i32 pct = n;
    for (const auto &[type, _a, _b, _c, _d] : queries) {
        if (type == 0) {
            ++pct;
        }
    }
    V<pi> pts;
    pts.reserve(pct);
    REP(i, n) { pts.emplace_back(x[i], y[i]); }
    for (const auto &[type, a, b, c, d] : queries) {
        if (type == 0) {
            pts.emplace_back(a, b);
        }
    }
    GRangeTree rt(pts);
    VV<i32> upd_pct(pct - n);
    REP(i, rt.size()) {
        if (rt[i] >= n) {
            upd_pct[rt[i] - n].push_back(i);
        }
    }
    FenwickTree<Add<i64>> ft(rt.size());
    REP(i, rt.size()) {
        if (rt[i] < n) {
            ft.add(i, w[rt[i]]);
        }
    }
    i32 it = 0;
    for (const auto &[type, a, b, c, d] : queries) {
        if (type == 0) {
            for (i32 upd : upd_pct[it++]) {
                ft.add(upd, c);
            }
        } else {
            i64 ans = 0;
            for (auto [l, r] : rt.rectangle(a, c, b, d)) {
                ans += ft.sum(l, r);
            }
            cout << ans << '\n';
        }
    }
}
#line 1 "data_structure/test/point_add_rectangle_sum.test.cpp"
#define PROBLEM "https://judge.yosupo.jp/problem/point_add_rectangle_sum"
#define FAST_IO

#line 2 "data_structure/fenwick_tree.hpp"

#include <cassert>
#include <vector>
#line 2 "data_structure/operations.hpp"

#include <algorithm>
#include <limits>
#include <utility>

template <typename T>
struct Add {
    using Value = T;
    static Value id() { return T(0); }
    static Value op(const Value &lhs, const Value &rhs) { return lhs + rhs; }
    static Value inv(const Value &x) { return -x; }
};

template <typename T>
struct Mul {
    using Value = T;
    static Value id() { return Value(1); }
    static Value op(const Value &lhs, const Value &rhs) { return lhs * rhs; }
    static Value inv(const Value &x) { return Value(1) / x; }
};

template <typename T>
struct Min {
    static_assert(std::numeric_limits<T>::is_specialized);
    using Value = T;
    static Value id() { return std::numeric_limits<T>::max(); }
    static Value op(const Value &lhs, const Value &rhs) {
        return std::min(lhs, rhs);
    }
};

template <typename T>
struct Max {
    static_assert(std::numeric_limits<T>::is_specialized);
    using Value = T;
    static Value id() { return std::numeric_limits<Value>::min(); }
    static Value op(const Value &lhs, const Value &rhs) {
        return std::max(lhs, rhs);
    }
};

template <typename T>
struct Xor {
    using Value = T;
    static Value id() { return T(0); }
    static Value op(const Value &lhs, const Value &rhs) { return lhs ^ rhs; }
    static Value inv(const Value &x) { return x; }
};

template <typename Monoid>
struct Reversible {
    using Value = std::pair<typename Monoid::Value, typename Monoid::Value>;
    static Value id() { return Value(Monoid::id(), Monoid::id()); }
    static Value op(const Value &v1, const Value &v2) {
        return Value(Monoid::op(v1.first, v2.first),
                     Monoid::op(v2.second, v1.second));
    }
};
#line 6 "data_structure/fenwick_tree.hpp"

template <typename CommutativeGroup>
class FenwickTree {
public:
    using Value = typename CommutativeGroup::Value;

private:
    std::vector<Value> data;

public:
    FenwickTree(int n) : data(n, CommutativeGroup::id()) {}

    void add(int idx, const Value &x) {
        assert(idx >= 0 && idx < (int)data.size());
        for (; idx < (int)data.size(); idx |= idx + 1) {
            data[idx] = CommutativeGroup::op(data[idx], x);
        }
    }

    Value sum(int r) const {
        assert(r >= 0 && r <= (int)data.size());
        Value ret = CommutativeGroup::id();
        for (; r > 0; r &= r - 1) {
            ret = CommutativeGroup::op(ret, data[r - 1]);
        }
        return ret;
    }

    Value sum(int l, int r) const {
        assert(l >= 0 && l <= r && r <= (int)data.size());
        return CommutativeGroup::op(sum(r), CommutativeGroup::inv(sum(l)));
    }
};

template <typename T>
using FenwickTreeAdd = FenwickTree<Add<T>>;
#line 2 "data_structure/general_range_tree.hpp"

#line 6 "data_structure/general_range_tree.hpp"

template <typename T>
class GRangeTree {
    std::vector<T> xs;
    std::vector<std::pair<T, int>> arr;
    std::vector<int> rngs;

    static bool compare_by_first(const std::pair<T, int> &p0,
                                 const std::pair<T, int> &p1) {
        return p0.first < p1.first;
    }

public:
    GRangeTree(const std::vector<std::pair<T, T>> &pts) : xs(), arr(), rngs() {
        xs.reserve(pts.size());
        for (const auto &[x, _y] : pts) {
            xs.push_back(x);
        }
        std::sort(xs.begin(), xs.end());
        xs.erase(std::unique(xs.begin(), xs.end()), xs.end());
        int xs_sz = (int)xs.size();
        std::vector<std::vector<std::pair<T, int>>> nodes(2 * xs_sz);
        for (int i = 0; i < (int)pts.size(); ++i) {
            int xi =
                (int)(std::lower_bound(xs.begin(), xs.end(), pts[i].first) -
                      xs.begin());
            nodes[xs_sz + xi].emplace_back(pts[i].second, i);
        }
        for (int i = xs_sz; i < 2 * xs_sz; ++i) {
            std::sort(nodes[i].begin(), nodes[i].end(), compare_by_first);
        }
        for (int i = xs_sz - 1; i > 0; --i) {
            nodes[i].reserve(nodes[2 * i].size() + nodes[2 * i + 1].size());
            std::merge(nodes[2 * i].begin(), nodes[2 * i].end(),
                       nodes[2 * i + 1].begin(), nodes[2 * i + 1].end(),
                       std::back_inserter(nodes[i]), compare_by_first);
        }
        int tot = 0;
        for (int i = 1; i < 2 * xs_sz; ++i) {
            tot += (int)nodes[i].size();
        }
        arr.reserve(tot);
        for (int i = 1; i < 2 * xs_sz; ++i) {
            for (auto ele : nodes[i]) {
                arr.emplace_back(ele);
            }
        }
        rngs.resize(2 * xs_sz, 0);
        for (int i = 1; i < 2 * xs_sz; ++i) {
            rngs[i] = rngs[i - 1] + (int)nodes[i].size();
        }
    }

    int size() const { return (int)arr.size(); }
    int operator[](int i) const { return arr[i].second; }

    // [xl, xr), [yl, yr)
    std::vector<std::pair<int, int>> rectangle(T xl, T xr, T yl, T yr) const {
        int xli =
            (int)(std::lower_bound(xs.begin(), xs.end(), xl) - xs.begin());
        int xri =
            (int)(std::lower_bound(xs.begin(), xs.end(), xr) - xs.begin());
        std::vector<std::pair<int, int>> ret;
        xli += (int)xs.size();
        xri += (int)xs.size();
        while (xli < xri) {
            if (xli % 2 == 1) {
                int l = rngs[xli - 1];
                int r = rngs[xli];
                ret.emplace_back(
                    (int)(std::lower_bound(arr.begin() + l, arr.begin() + r,
                                           std::pair<T, int>(yl, 0),
                                           compare_by_first) -
                          arr.begin()),
                    (int)(std::lower_bound(arr.begin() + l, arr.begin() + r,
                                           std::pair<T, int>(yr, 0),
                                           compare_by_first) -
                          arr.begin()));
                ++xli;
            }
            if (xri % 2 == 1) {
                --xri;
                int l = rngs[xri - 1];
                int r = rngs[xri];
                ret.emplace_back(
                    (int)(std::lower_bound(arr.begin() + l, arr.begin() + r,
                                           std::pair<T, int>(yl, 0),
                                           compare_by_first) -
                          arr.begin()),
                    (int)(std::lower_bound(arr.begin() + l, arr.begin() + r,
                                           std::pair<T, int>(yr, 0),
                                           compare_by_first) -
                          arr.begin()));
            }
            xli /= 2;
            xri /= 2;
        }
        return ret;
    }
};
#line 2 "template/template.hpp"
#include <bits/stdc++.h>
#define OVERRIDE(a, b, c, d, ...) d
#define REP2(i, n) for (i32 i = 0; i < (i32)(n); ++i)
#define REP3(i, m, n) for (i32 i = (i32)(m); i < (i32)(n); ++i)
#define REP(...) OVERRIDE(__VA_ARGS__, REP3, REP2)(__VA_ARGS__)
#define PER2(i, n) for (i32 i = (i32)(n)-1; i >= 0; --i)
#define PER3(i, m, n) for (i32 i = (i32)(n)-1; i >= (i32)(m); --i)
#define PER(...) OVERRIDE(__VA_ARGS__, PER3, PER2)(__VA_ARGS__)
#define ALL(x) begin(x), end(x)
#define LEN(x) (i32)(x.size())
using namespace std;
using u32 = unsigned int;
using u64 = unsigned long long;
using i32 = signed int;
using i64 = signed long long;
using f64 = double;
using f80 = long double;
using pi = pair<i32, i32>;
using pl = pair<i64, i64>;
template <typename T>
using V = vector<T>;
template <typename T>
using VV = V<V<T>>;
template <typename T>
using VVV = V<V<V<T>>>;
template <typename T>
using VVVV = V<V<V<V<T>>>>;
template <typename T>
using PQR = priority_queue<T, V<T>, greater<T>>;
template <typename T>
bool chmin(T &x, const T &y) {
    if (x > y) {
        x = y;
        return true;
    }
    return false;
}
template <typename T>
bool chmax(T &x, const T &y) {
    if (x < y) {
        x = y;
        return true;
    }
    return false;
}
template <typename T>
i32 lob(const V<T> &arr, const T &v) {
    return (i32)(lower_bound(ALL(arr), v) - arr.begin());
}
template <typename T>
i32 upb(const V<T> &arr, const T &v) {
    return (i32)(upper_bound(ALL(arr), v) - arr.begin());
}
template <typename T>
V<i32> argsort(const V<T> &arr) {
    V<i32> ret(arr.size());
    iota(ALL(ret), 0);
    sort(ALL(ret), [&](i32 i, i32 j) -> bool {
        if (arr[i] == arr[j]) {
            return i < j;
        } else {
            return arr[i] < arr[j];
        }
    });
    return ret;
}
#ifdef INT128
using u128 = __uint128_t;
using i128 = __int128_t;
#endif
[[maybe_unused]] constexpr i32 INF = 1000000100;
[[maybe_unused]] constexpr i64 INF64 = 3000000000000000100;
struct SetUpIO {
    SetUpIO() {
#ifdef FAST_IO
        ios::sync_with_stdio(false);
        cin.tie(nullptr);
#endif
        cout << fixed << setprecision(15);
    }
} set_up_io;
void scan(char &x) { cin >> x; }
void scan(u32 &x) { cin >> x; }
void scan(u64 &x) { cin >> x; }
void scan(i32 &x) { cin >> x; }
void scan(i64 &x) { cin >> x; }
void scan(f64 &x) { cin >> x; }
void scan(string &x) { cin >> x; }
template <typename T>
void scan(V<T> &x) {
    for (T &ele : x) {
        scan(ele);
    }
}
void read() {}
template <typename Head, typename... Tail>
void read(Head &head, Tail &...tail) {
    scan(head);
    read(tail...);
}
#define CHAR(...)     \
    char __VA_ARGS__; \
    read(__VA_ARGS__);
#define U32(...)     \
    u32 __VA_ARGS__; \
    read(__VA_ARGS__);
#define U64(...)     \
    u64 __VA_ARGS__; \
    read(__VA_ARGS__);
#define I32(...)     \
    i32 __VA_ARGS__; \
    read(__VA_ARGS__);
#define I64(...)     \
    i64 __VA_ARGS__; \
    read(__VA_ARGS__);
#define F64(...)     \
    f64 __VA_ARGS__; \
    read(__VA_ARGS__);
#define STR(...)        \
    string __VA_ARGS__; \
    read(__VA_ARGS__);
#define VEC(type, name, size) \
    V<type> name(size);       \
    read(name);
#define VVEC(type, name, size1, size2)    \
    VV<type> name(size1, V<type>(size2)); \
    read(name);
#line 7 "data_structure/test/point_add_rectangle_sum.test.cpp"

int main() {
    i32 n, q;
    cin >> n >> q;
    V<i32> x(n), y(n), w(n);
    REP(i, n) { cin >> x[i] >> y[i] >> w[i]; }
    V<tuple<i32, i32, i32, i32, i32>> queries(q);
    for (auto &[type, a, b, c, d] : queries) {
        cin >> type;
        if (type == 0) {
            cin >> a >> b >> c;
            d = 0;
        } else {
            cin >> a >> b >> c >> d;
        }
    }
    i32 pct = n;
    for (const auto &[type, _a, _b, _c, _d] : queries) {
        if (type == 0) {
            ++pct;
        }
    }
    V<pi> pts;
    pts.reserve(pct);
    REP(i, n) { pts.emplace_back(x[i], y[i]); }
    for (const auto &[type, a, b, c, d] : queries) {
        if (type == 0) {
            pts.emplace_back(a, b);
        }
    }
    GRangeTree rt(pts);
    VV<i32> upd_pct(pct - n);
    REP(i, rt.size()) {
        if (rt[i] >= n) {
            upd_pct[rt[i] - n].push_back(i);
        }
    }
    FenwickTree<Add<i64>> ft(rt.size());
    REP(i, rt.size()) {
        if (rt[i] < n) {
            ft.add(i, w[rt[i]]);
        }
    }
    i32 it = 0;
    for (const auto &[type, a, b, c, d] : queries) {
        if (type == 0) {
            for (i32 upd : upd_pct[it++]) {
                ft.add(upd, c);
            }
        } else {
            i64 ans = 0;
            for (auto [l, r] : rt.rectangle(a, c, b, d)) {
                ans += ft.sum(l, r);
            }
            cout << ans << '\n';
        }
    }
}
Back to top page