This documentation is automatically generated by online-judge-tools/verification-helper
#include "data_structure/segment_tree.hpp"
#pragma once
#include <cassert>
#include <utility>
#include <vector>
#include "operations.hpp"
template <typename Monoid>
class SegmentTree {
public:
using Value = typename Monoid::Value;
private:
int old_length;
int length;
std::vector<Value> node;
static int ceil2(int n) {
int l = 1;
while (l < n) {
l <<= 1;
}
return l;
}
public:
SegmentTree(int n)
: old_length(n),
length(ceil2(old_length)),
node(length << 1, Monoid::id()) {
assert(n >= 0);
}
SegmentTree(const std::vector<Value> &v)
: old_length((int)v.size()),
length(ceil2(old_length)),
node(length << 1, Monoid::id()) {
for (int i = 0; i < old_length; ++i) {
node[i + length] = v[i];
}
for (int i = length - 1; i > 0; --i) {
node[i] = Monoid::op(node[i << 1], node[i << 1 | 1]);
}
}
template <typename F>
SegmentTree(int n, const F &f)
: old_length(n), length(ceil2(n)), node(length << 1, Monoid::id()) {
assert(n >= 0);
for (int i = 0; i < old_length; ++i) {
node[i + length] = f(i);
}
for (int i = length - 1; i > 0; --i) {
node[i] = Monoid::op(node[i << 1], node[i << 1 | 1]);
}
}
const Value &operator[](int idx) const {
assert(idx >= 0 && idx < old_length);
return node[idx + length];
}
void update(int idx, Value val) {
assert(idx >= 0 && idx < old_length);
idx += length;
node[idx] = std::move(val);
while (idx != 1) {
idx >>= 1;
node[idx] = Monoid::op(node[idx << 1], node[idx << 1 | 1]);
}
}
Value prod(int l, int r) const {
assert(l >= 0 && l <= r && r <= old_length);
Value prodl = Monoid::id();
Value prodr = Monoid::id();
l += length;
r += length;
while (l != r) {
if (l & 1) {
prodl = Monoid::op(prodl, node[l++]);
}
if (r & 1) {
prodr = Monoid::op(node[--r], prodr);
}
l >>= 1;
r >>= 1;
}
return Monoid::op(prodl, prodr);
}
Value all_prod() const { return node[1]; }
};
#line 2 "data_structure/segment_tree.hpp"
#include <cassert>
#include <utility>
#include <vector>
#line 2 "data_structure/operations.hpp"
#include <algorithm>
#include <limits>
#line 6 "data_structure/operations.hpp"
template <typename T>
struct Add {
using Value = T;
static Value id() { return T(0); }
static Value op(const Value &lhs, const Value &rhs) { return lhs + rhs; }
static Value inv(const Value &x) { return -x; }
};
template <typename T>
struct Mul {
using Value = T;
static Value id() { return Value(1); }
static Value op(const Value &lhs, const Value &rhs) { return lhs * rhs; }
static Value inv(const Value &x) { return Value(1) / x; }
};
template <typename T>
struct Min {
static_assert(std::numeric_limits<T>::is_specialized);
using Value = T;
static Value id() { return std::numeric_limits<T>::max(); }
static Value op(const Value &lhs, const Value &rhs) {
return std::min(lhs, rhs);
}
};
template <typename T>
struct Max {
static_assert(std::numeric_limits<T>::is_specialized);
using Value = T;
static Value id() { return std::numeric_limits<Value>::min(); }
static Value op(const Value &lhs, const Value &rhs) {
return std::max(lhs, rhs);
}
};
template <typename T>
struct Xor {
using Value = T;
static Value id() { return T(0); }
static Value op(const Value &lhs, const Value &rhs) { return lhs ^ rhs; }
static Value inv(const Value &x) { return x; }
};
template <typename Monoid>
struct Reversible {
using Value = std::pair<typename Monoid::Value, typename Monoid::Value>;
static Value id() { return Value(Monoid::id(), Monoid::id()); }
static Value op(const Value &v1, const Value &v2) {
return Value(Monoid::op(v1.first, v2.first),
Monoid::op(v2.second, v1.second));
}
};
#line 7 "data_structure/segment_tree.hpp"
template <typename Monoid>
class SegmentTree {
public:
using Value = typename Monoid::Value;
private:
int old_length;
int length;
std::vector<Value> node;
static int ceil2(int n) {
int l = 1;
while (l < n) {
l <<= 1;
}
return l;
}
public:
SegmentTree(int n)
: old_length(n),
length(ceil2(old_length)),
node(length << 1, Monoid::id()) {
assert(n >= 0);
}
SegmentTree(const std::vector<Value> &v)
: old_length((int)v.size()),
length(ceil2(old_length)),
node(length << 1, Monoid::id()) {
for (int i = 0; i < old_length; ++i) {
node[i + length] = v[i];
}
for (int i = length - 1; i > 0; --i) {
node[i] = Monoid::op(node[i << 1], node[i << 1 | 1]);
}
}
template <typename F>
SegmentTree(int n, const F &f)
: old_length(n), length(ceil2(n)), node(length << 1, Monoid::id()) {
assert(n >= 0);
for (int i = 0; i < old_length; ++i) {
node[i + length] = f(i);
}
for (int i = length - 1; i > 0; --i) {
node[i] = Monoid::op(node[i << 1], node[i << 1 | 1]);
}
}
const Value &operator[](int idx) const {
assert(idx >= 0 && idx < old_length);
return node[idx + length];
}
void update(int idx, Value val) {
assert(idx >= 0 && idx < old_length);
idx += length;
node[idx] = std::move(val);
while (idx != 1) {
idx >>= 1;
node[idx] = Monoid::op(node[idx << 1], node[idx << 1 | 1]);
}
}
Value prod(int l, int r) const {
assert(l >= 0 && l <= r && r <= old_length);
Value prodl = Monoid::id();
Value prodr = Monoid::id();
l += length;
r += length;
while (l != r) {
if (l & 1) {
prodl = Monoid::op(prodl, node[l++]);
}
if (r & 1) {
prodr = Monoid::op(node[--r], prodr);
}
l >>= 1;
r >>= 1;
}
return Monoid::op(prodl, prodr);
}
Value all_prod() const { return node[1]; }
};