This documentation is automatically generated by online-judge-tools/verification-helper
#include "algebra/system_of_linear_equations.hpp"
#pragma once
#include <optional>
#include <utility>
template <typename T>
std::optional<std::pair<std::vector<T>, std::vector<std::vector<T>>>>
linear_equations(int n, int m, std::vector<std::vector<T>> a, std::vector<T> b) {
assert((int)a.size() == n);
for (int i = 0; i < n; ++i) {
assert((int)a[i].size() == m);
}
assert((int)b.size() == n);
int li = 0;
std::vector<int> spe(m, -1);
for (int i = 0; li < n && i < m; ++i) {
int row = -1;
for (int j = li; j < n; ++j) {
if (a[j][i] != T()) {
row = j;
break;
}
}
if (row == -1) {
continue;
}
std::swap(a[row], a[li]);
std::swap(b[row], b[li]);
T inv = a[li][i].inv();
for (int j = 0; j < m; ++j) {
a[li][j] *= inv;
}
b[li] *= inv;
for (int j = 0; j < n; ++j) {
if (j == li) {
continue;
}
T cf = a[j][i];
for (int k = 0; k < m; ++k) {
a[j][k] -= a[li][k] * cf;
}
b[j] -= b[li] * cf;
}
spe[i] = li++;
}
for (int i = li; i < n; ++i) {
if (b[i] != T()) {
return std::nullopt;
}
}
std::vector<T> ans(m, T());
std::vector<std::vector<T>> basis(m - li, std::vector<T>(m, T()));
int ph = 0;
for (int i = 0; i < m; ++i) {
if (spe[i] != -1) {
ans[i] = b[spe[i]];
} else {
basis[ph][i] = T(1);
for (int j = 0; j < i; ++j) {
if (int r = spe[j]; r != -1) {
basis[ph][j] = -a[r][i];
}
}
++ph;
}
}
return std::make_pair(ans, basis);
}
#line 2 "algebra/system_of_linear_equations.hpp"
#include <optional>
#include <utility>
template <typename T>
std::optional<std::pair<std::vector<T>, std::vector<std::vector<T>>>>
linear_equations(int n, int m, std::vector<std::vector<T>> a, std::vector<T> b) {
assert((int)a.size() == n);
for (int i = 0; i < n; ++i) {
assert((int)a[i].size() == m);
}
assert((int)b.size() == n);
int li = 0;
std::vector<int> spe(m, -1);
for (int i = 0; li < n && i < m; ++i) {
int row = -1;
for (int j = li; j < n; ++j) {
if (a[j][i] != T()) {
row = j;
break;
}
}
if (row == -1) {
continue;
}
std::swap(a[row], a[li]);
std::swap(b[row], b[li]);
T inv = a[li][i].inv();
for (int j = 0; j < m; ++j) {
a[li][j] *= inv;
}
b[li] *= inv;
for (int j = 0; j < n; ++j) {
if (j == li) {
continue;
}
T cf = a[j][i];
for (int k = 0; k < m; ++k) {
a[j][k] -= a[li][k] * cf;
}
b[j] -= b[li] * cf;
}
spe[i] = li++;
}
for (int i = li; i < n; ++i) {
if (b[i] != T()) {
return std::nullopt;
}
}
std::vector<T> ans(m, T());
std::vector<std::vector<T>> basis(m - li, std::vector<T>(m, T()));
int ph = 0;
for (int i = 0; i < m; ++i) {
if (spe[i] != -1) {
ans[i] = b[spe[i]];
} else {
basis[ph][i] = T(1);
for (int j = 0; j < i; ++j) {
if (int r = spe[j]; r != -1) {
basis[ph][j] = -a[r][i];
}
}
++ph;
}
}
return std::make_pair(ans, basis);
}